Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures.
نویسندگان
چکیده
A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous to those of other lipothrixviruses, a single tRNA(Lys) gene containing a 12-bp archaeal intron, and a 1,008-bp repeat-rich region near the center of the genome.
منابع مشابه
Identified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملStructure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses.
Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae. The structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studie...
متن کاملGenotype and phenotype of COVID-19: Their roles in pathogenesis
COVID-19 is a novel coronavirus with an outbreak of unusual viral pneumonia in Wuhan, China, and then pandemic. Based on its phylogenetic relationships and genomic structures the COVID-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have many similarities, but also have differences in their genomic and phenotypic structure that can influence th...
متن کاملThe archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers.
BACKGROUND The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly...
متن کاملThe Effect of RC Core on Rehabilitation of Tubular Structures
In the present study, the effect of core on shear lag phenomenon in tubular structures is investigated. Three different tubular structure models including model without core, model with central core and model with central core but eliminated in last 15 stories have been analyzed. A shear lag index is defined for evaluating these models. From examination of the results, the effective influence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 187 11 شماره
صفحات -
تاریخ انتشار 2005